Uncertain Graphs meet Collaborative Filtering

نویسندگان

  • Claudio Taranto
  • Nicola Di Mauro
  • Floriana Esposito
چکیده

Collaborative ltering (CF) aims at predicting the user interest for a given item. In CF systems a set of users ratings is used to predict the rating of a given user on a given item using the ratings of a set of users who have already rated the item and whose preferences are similar to those of the user. In this paper we propose to use a framework based on uncertain graphs in order to deal with collaborative ltering problems. In this framework relationships among users and items and their corresponding likelihood will be encoded in a uncertain graph that can then be used to infer the probability of existence of a link between an user and an item involved in the graph. In order to solve CF tasks the framework uses an approximate inference method adopting a constrained simple path query language. The aim of the paper is to verify whether uncertain graphs are a valuable tool for CF, by solving classical, complex and structured problems. The performance of the proposed approach is reported when applied to a real-world domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Scaling Collaborative Filtering to Large-Scale Bipartite Rating Graphs Using Lenskit and Spark

Popular social networking applications such as Facebook, Twitter, Friendster, etc. generate very large graphs with different characteristics. These social networks are huge, comprising millions of nodes and edges that push existing graph mining algorithms and architectures to their limits. In product-rating graphs, users connect with each other and rate items in tandem. In such bipartite graphs...

متن کامل

Transfer Learning in Collaborative Filtering with Uncertain Ratings

To solve the sparsity problem in collaborative filtering, researchers have introduced transfer learning as a viable approach to make use of auxiliary data. Most previous transfer learning works in collaborative filtering have focused on exploiting point-wise ratings such as numerical ratings, stars, or binary ratings of likes/dislikes. However, in many real-world recommender systems, many users...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012